Monday, August 19, 2019

New S2 cell assay reported -- Cell density

Romine ML, Li M, Liu KJ, Patel SK, Nelson JG, Shen P, Cai HN. A Cell Density-Dependent Reporter in the Drosophila S2 Cells. Sci Rep. 2019 Aug 14;9(1):11868. doi: 10.1038/s41598-019-47652-0. PubMed PMID: 31413273.

Abstract: "Cell density regulates many aspects of cell properties and behaviors including metabolism, growth, cytoskeletal structure and locomotion. Importantly, the responses by cultured cells to density signals also uncover key mechanisms that govern animal development and diseases in vivo. Here we characterized a density-responsive reporter system in transgenic Drosophila S2 cells. We show that the reporter genes are strongly induced in a cell density-dependent and reporter-independent fashion. The rapid and reversible induction occurs at the level of mRNA accumulation. We show that multiple DNA elements within the transgene sequences, including a metal response element from the metallothionein gene, contribute to the reporter induction. The reporter induction correlates with changes in multiple cell density and growth regulatory pathways including hypoxia, apoptosis, cell cycle and cytoskeletal organization. Potential applications of such a density-responsive reporter will be discussed."

Monday, August 12, 2019

in vivo RNAi screen in the wing

Rotelli MD, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Calvi BR. An RNAi Screen for Genes Required for Growth of Drosophila Wing Tissue. G3 (Bethesda). 2019 Aug 6. pii: g3.400581.2019. doi: 10.1534/g3.119.400581. PubMed PMID: 31387856.

Abstract: "Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila. The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or βNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development."